反接線法:(接線如圖五所示)通電前,先將“試驗電壓”開關置于“關”位置,將UH端子接地,將IX的芯線(有CX標記)接至被試品CX的**。通電后,按“反接”鍵,選好反接線方式;用“試驗電壓”開關選好電壓;然后按“起動”鍵開始測試。★★★特別注意:屏蔽“E”與IX電位接近,可接至被試品高壓端的屏蔽或者懸空,**不能接地?。?!。
外接高壓法:(接線如圖六所示)CB為外接標準電容,CX為被試品。當被試品要求試驗電壓大于10KV時,可以外接高壓進行測量,即不使用儀器內部高壓變壓器,而外接一臺高壓裝置進行測量。★★★注意:外接高壓法進行測量時,“試驗電壓”開關必須置于“關”位置?。?!★★★外接高壓法時,應外接標準電容器CB,不許使用儀器內標準電容器?。。?br />通電后,多次按“外接”鍵,選好外接線方式以及外接的標準電容容量,必須再將“試驗電壓”開關置于“關”位置!調整好外接電壓,然后按“起動”鍵開始測試。SXJS-IV型為中文液晶顯示,有中文漢字提示各類測試信息。當測試完成后,可按“打印”鍵,打印測試結果。六、保管免費及免費修理期限儀器應在原廠包裝條件下,于室內貯存,其環境溫度為0-40℃相對濕度為30%-70%,且在空氣中不應含有足以引起腐蝕的有害物質。儀器從冷環境突然到熱環境中時,可能有結露,應等結露消失后再使用。每年應打開儀器,**由于野外作業產生的灰塵,特別是內部標準電容處的灰塵。儀器和附件自制造廠發貨日期起12個月內,當用戶在完全遵守制造廠使用說明書所規定的保管的使用條件下,發現產品制造質量**或不能正常工作時,制造廠負責給予修理或更換。七、儀器成套性(1)介質損耗測試儀 1臺(2)專用測試線纜 2根(3)保險絲(5A) 4只(0.5A) 2只(4)電源線 1根(5)使用說明書 1份(6)產品合格證 1份
附錄:抗干擾探討
(一)、干擾以電容試品為例,當工頻電壓加在電容上時,其上流過兩個電流(圖A):容性電流Ic和阻性電流Ir,合成為試品電流Ix。Ic和Ir形成的夾角δ即為介質損耗角。當干擾電流Ig流入試品時,與Ix合成為Igx,Ix與Igx之間的夾角β是由干擾電流Ig形成的。測量到的電流Igx與Uc的夾角是β+δ與階損角δ相差很大。(二)、方法目前,智能介質損耗儀通常采用的抗干擾方法主要有種:(1)、移相法方法是將加到試品上的測試電壓Ur移相,使Uc與Ig同相位(Ur與Uc恒定相差90度),從圖B中可見,測量到的電流Igx與有效的Ix相差不大(當干擾電流較小時),如果能再反Ig方向將Uc移相一次,兩次數據合成即能準確地找到階損角δ(即使干擾電流較大)。(2)、變頻法現場測量時通常使用工頻電源,而現場干擾主要也是工頻,同頻率的電源相互疊加形成干擾,去除無用的干擾而保留有用測試電流是非常困難的。用非工頻電源進行測量,則工頻電源的干擾電流與測試電流由于頻率不同,是很容易區分開的。比如,將所含有干擾混合信號的前10mS信號,與后10mS信號相加,就去除了工頻干擾,而測量信號不是50Hz所以得以保留。(3)、波形分析法計算機的運用,使大量的工程分析計算變得方便,通過對現場干擾的大量采集分析,結合測量到的波形,運用高等數學理論,巧妙地去除干擾,也同樣達到目的。甚至去除一、三、五次諧波也很方便。(三)、要求工程測量介質損耗,通常要求能分辨出0.1%介損值是不過分的。介質損耗:tg(δ)=0.1%=0.001損耗角度:δ=0.057°對應時間:T=δ/360°×20mS=3.183μS(四)、比較干擾信號是由干擾源通過媒介施加到試品上,即使干擾源是恒定的,但傳輸媒介是空氣及其它絕緣體不是恒定介質(圖C、圖D),所以干擾電流Ig方向隨機變化的程度≥0.057°不足為奇。要使測試電源隨時跟蹤Ig,而跟蹤角度誤差≤0.057°絕非易事。所以*終抗干擾雖然有效,但是測量精度不容易提高。運行的設備(試品)在工頻下運行,要求知道在工頻條件下的介質損耗。理論上:介質損耗=2πfRC,(f=50Hz)所以用非工頻的f'電源加在試品上所測得的介質損耗=2πf'RC,再由這一結果推算出2πfRC易如反掌。然而運行設備的等效R,不是理想的電阻,其中更多的是有極分子,其等效R隨頻率f的變化而變化,所以盡管理論上介質損耗與頻率成正比,而實際介質損耗(2πfRC)不與頻率成正比。這給根據變頻2πf'RC推算工頻2πfRC造成了麻煩。為了減小這個非線性誤差,f'采用接近工頻的頻率,但過分接近等于沒有變頻,這就是主要矛盾。好在大多數試品對頻率的敏感沒有那么強烈。所以變頻法抗干擾是比較成功的。產生一個有一定的功率,且又是正弦波的異頻電源有較大的難度。因為異頻電源波形的失真度對相角的影響很大,或者與實際工頻正弦波電源情況下所造成的介質損耗有誤差。為了去除接近f'工頻干擾,變頻法不得不處理大量的數據,所以相對測量時間較長。(五)、SXJS-IV處理干擾的方法測試電源采用工頻,使測量與實際一樣。交錯分時測量干擾信號和綜合信號,將所有測到的信號都**地鎖定在與測試電源同步的0相位上,再將干擾信號倒相與綜合信號疊加得到有效信號。在數字處理上,廣泛地采用數字與電子技術,剔除了相角相差1%的信號,剔除了數值較大的幾組信號,也剔除了數值較小的幾組信號,再將許多組中值信號求平均值得出結果,而每組信號都是由許多測量信號與處理后的干擾信號構成的。在調試中所有數據都以6位有效數字計算。為了提高測量速度,采用雙計算機和高速并行A/D轉換器處理信息,軟件全部用匯編完成。對于強干擾信號較**地測出其大小不難,儀器特別設計的高精度相位鎖定器能將其準確地定相,為完全消除干擾提供了便利;對于弱干擾信號粗略地測出其大小也是可以的,而相位鎖定器并不受測量信號的大小影響,仍然準確定相,弱干擾本來對測量信號的影響就小,再粗略地去除其大部分,也可以認為去除了干擾。對于突發性干擾信號,儀器盡可能地將采樣的干擾數據廢除,或宣布測試失敗,以保證數據結果的可靠性。實驗數據:用工頻500V電壓加載50pF電容,測量信號電流約8μA,無干擾時,快速測量測得介損為0.08%,抗干擾測量測得介損為0.08%;用20000V工頻做干擾,距離被試品10厘米,快速測量測得介損為12.23%,抗干擾測量測得介損為0.09%。